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A new knowledge-based scoring function (PMF-score), implemented into the DOCK4 program,
was used to screen a database of 3247 small molecules for binding to the FK506 binding protein
(FKBP). The computational ranking of these compounds was compared to the binding affinities
measured by NMR. It was demonstrated that small, weakly binding molecules have, on average,
higher computational scores than nonbinders and are enriched in the upper ranks of the
computational scoring lists. In addition, the results obtained with the PMF scoring function
were superior (by 30-120% larger enrichment factors) to those obtained with the standard
force field score of DOCK4. The reliable ranking of small, weakly binding molecules offers
new ways of designing building blocks in combinatorial libraries as well as SAR by NMR
libraries with the increased chance of identifying suitable lead compounds for drug design.

Introduction

The fast and cost-effective identification of suitable
lead compounds is an extremely important step in the
drug-discovery process. In search for such leads, biologi-
cal screening techniques like high-throughput screening
have usually been employed to screen proprietary
databases of hundreds of thousands of compounds.1
However, these databases often do not contain a mol-
ecule with the desired properties that binds to a specific
target macromolecule. In order to increase the chances
of finding suitable leads, more compounds can be
included in the library by buying or synthesizing them.
Combinatorial chemistry can be used to prepare large
libraries of tens or even hundreds of thousands of
compounds.2,3 However, since the number of compounds
that could theoretically be synthesized is so overwhelm-
ingly large (>1060), combinatorial libraries contain only
a tiny fraction of the conceivable molecular space.
Thus one would ideally like to guide library design by
selecting a set of compounds to make for a particular
target.

One way of determining molecular fragments that
bind to the individual pockets of a protein target is
through the use of a recently introduced NMR-based
screening method called SAR by NMR.4 Using this
technique, small organic molecules are identified that
bind to proximal subsites of a protein.4 Binding is
determined by the observation of 15N or 1H amide
chemical shift changes in two-dimensional 15N hetero-
nuclear single-quantum correlation (15N HSQC) spectra.
When two ligands that bind to proximal binding sites
have been identified, the incorporation of a linker
between the two molecules can produce a high-affinity
ligand. There are two major advantages of this method.
First, the binding site of the molecules can be rapidly
identified based on the chemical shift changes observed
in the NMR spectra. Second, even molecules with low

binding affinities (in the millimolar range) can be
reliably identified. Similar to building blocks in combi-
natorial chemistry, the molecules to be linked should
be small since the final ligand that is built from these
small molecules should ideally have a molecular weight
less than 500 Da.5

In principle, another approach for identifying small
molecules that bind to proteins is by computational
methods. Computational approaches have the advan-
tage over SAR by NMR, or other experimental ap-
proaches, in not requiring any protein sample. Indeed,
computational methods have been widely used to aid
in the design of combinatorial libraries6 by implement-
ing molecular diversity and cluster methods to increase
the chances of finding active compounds in biological
screening.7 Ideally, however, computational methods
can be used to screen a library of compounds for binding
to a biological target. The key is to develop algorithms
like docking8-16 or de novo design17,18 and scoring
functions18-28 that reliably predict binding affinities of
small molecules to biological targets. Although the
design of reliable scoring functions is a long-standing
issue in computational chemistry, the accuracy of exist-
ing scoring functions is not yet high enough to make
reliable predictions of protein-ligand binding affinities
for a large number of molecules in a reasonable time.
Most scoring functions were evaluated by demonstrating
that they can identify strong binding molecules in
databases. Unfortunately, it is usually unlikely to find
strong binders in an existing database. Furthermore,
assuming additivity in binding affinity of the building
blocks of a library, it will be much more effective to dock
and score putative building blocks than the enumerated
library itself. Therefore, a computational scoring func-
tion must be able to solve the much more challenging
problem of identifying small, weakly binding molecules
that can serve as building blocks in the design of
combinatorial libraries or SAR by NMR libraries.

Recently, we introduced a new knowledge-based scor-
ing function (potential of mean force score (PMF-score))
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that combines the accuracy of empirical scoring func-
tions with the advantage of higher generality and
therefore wider applicability.28 It was shown that PMF-
score performs better than the most prominent empiri-
cal scoring function used in docking and de novo design
programs17,20 by scoring a wide variety of protein-
ligand structures of the Brookhaven Protein Data
Bank29 (PDB) and modeled HIV-1 protease inhibitors.
Here we report the implementation of this new scoring
function into the DOCK4 program9,11 and the use of this
DOCK4/PMF-score approach to dock a library of 3247
small molecules into the FK506 binding site of FKBP.
The scores obtained by this computational approach
were compared to the FKBP binding affinities of these
compounds measured by NMR. This is the first time
that a docking/scoring approach has tackled in a sys-
tematic way the challenging task of identifying weakly
binding molecules.

Methods

Experimental Determination of Dissociation Con-
stants. Ligand binding was detected by acquiring sensitivity-
enhanced 15N HSQC spectra30 on uniformly 15N-labeled FKBP
in the presence and absence of added compound. NMR samples
consisted of 0.3 mM FKBP in an aqueous buffer composed of
50 mM phosphate, 100 mM NaCl, 10% D2O, pH 6.5. The
compounds were added as solutions in perdeuterated DMSO.
All NMR spectra were acquired on a Bruker DMX500 spec-
trometer at 303 K. For compounds which produced measurable
chemical shift changes at concentrations of 1.0 mM, dissocia-
tion constants were obtained by monitoring the average-
weighted chemical shift changes [∆(1H,15N) ) (δ(1H)2 + (δ(15N)/
5)2)0.5] of the backbone amides for residues D37, S38, V55, I56,
W59, I90, I91, and F99 as a function of ligand concentration
over the range of 0-2 mM. Data were fit using a single-binding
site model. A least-squares grid search was performed by
varying the values of KD and the chemical shift of the fully
saturated protein. The reported dissociation constants are
averages of those residues for which the average-weighted
chemical shift difference between the free and bound states
was greater than 0.1 ppm. For compounds which produced no
chemical shift changes at concentrations of 1.0 mM, dissocia-
tion constants were estimated to be greater than 10.0 mM.

Validation of Molecular Structure and Aqueous Solu-
bility. Molecular structures and solubility were validated for
selected compounds by analyzing one-dimensional 1H NMR
spectra obtained on compounds dissolved to 200 µM in either
CDCl3, DMSO-d6, or D2O. Compounds were considered to be
sufficiently soluble for SAR by NMR analysis when the
compounds were observed in NMR spectra obtained in D2O
and there was no visible precipitation.

Implementing the PMF-Score into DOCK4. The PMF-
score of a protein-ligand complex is a knowledge-based
measure for its binding free energy. It is calculated as the sum
over all protein-ligand atom pair interaction free energies
Aij(r) as function of the atom pair distance r by

where kl is a protein-ligand atom pair of type ij. The atom
pair interaction energies (potentials of mean force) were
derived by calculating atom pair distribution functions using
protein-ligand complexes from the entire Brookhaven PDB29

as structural data source.28 The potential of mean force for an
atom pair of type ij can be written as

where kB is the Boltzmann factor, T is the absolute temper-
ature, f Vol•corr

j (r) is a ligand volume correction factor, F seg
ij is

the number density of atom pair ij occurrences at a certain
distance, and F bulk

ij is the number density of pair ij in an
appropriate reference state. A detailed derivation of the scoring
function has been reported elsewhere.28

Since there are no occurrences for short distances of atom
pair types ij in the PDB database (other than for incorrect
structures), the derived potentials of mean force (PMF) for
short distances would be infinity. In order to assign more
meaningful interaction potentials for short distances, we added
van der Waals (VDW) interactions to the PMF between i and
j for distances shorter than the longest unoccupied distance
for the respective atom type found in the PDB. Furthermore,
if the VDW interaction for a particular distance (regardless if
pair occurrences were found in the PDB) was larger than 4
kcal/mol, the PMF was overwritten by the VDW term. The
VDW term was calculated using a 6-12 Lennard-Jones
potential following the implementation of VDW interactions
in the force-field scoring (AMBER31,32) of DOCK4. A united
atom model was applied for protein and ligand atoms. In order
to prevent VDW collisions within the ligand, we added
intraligand VDW contributions to the PMF-score during the
flexible ligand-docking process. All DOCK4 default settings
were used for the force-field scoring.

Implementing the PMF-score into the DOCK4 program9 was
favorable for two reasons. First, the simplex minimizer of
DOCK4 allows us to ignore the derivatives of the scoring
function, and second, precomputing the PMF-score for a fixed
protein on a grid speeds up the computation by a factor of 100
compared to the continuous evaluation of pair potentials for
all protein-ligand atom pairs. For the standard implementa-
tion of the adapted AMBER force-field score in DOCK4, only
two grids are needed (electrostatic and VDW interactions); in
the case of the PMF-score we implemented 34 grids according
to 34 different ligand atom types that are defined in our
approach.28 While this guarantees that the PMF-score is
evaluated as quickly as the force-field score, it requires about
10 times more memory. Since the DOCK4 user is advised to
use about 106 grid points/grid, the user needs considerable
memory (∼150 Mbytes) for using the PMF-score. Even this
memory size, however, is usually not a large obstacle in terms
of today’s computer power.

A three-dimensional database file of a library of compounds
tested using SAR by NMR was created by converting SMILES
keys of all the molecules into SYBYL MOL2 file format with
CONCORD.33 Flexible docking against FKBP was performed
for each molecule using DOCK4 with 1000 initial anchor
orientations and a maximum of 100 minimization steps using
the PMF-score throughout the flexible docking process as
energy function. Intramolecular VDW interactions were added
to the PMF-score during the docking procedure but may be
omitted in the final score of the best binding mode (see
discussion below). An average of about 90 s/molecule was
needed to finish the docking on an R10000 processor of an SGI
workstation. The same conditions were chosen for the reference
docking calculations using the force-field score as standard
scoring function in DOCK4. The length of these calculations
was the same as with PMF-score.

Computational Ranking of Molecules. To evaluate the
enrichment of validated weak binders in the top ranks of the
computational scoring list for the different scoring functions,
we define the following measure as the ratio of the average
rank of any compound to the average rank of a binding
compound in the database:

PMF-score ) ∑
kl

r<rcut-off
ij

Aij(r) (1)

Aij(r) ) -kBT ln[f Vol•corr
j (r)

Fseg
ij (r)

Fbulk
ij ] ) -kBT ln Fseg

ij (r) -

kBT ln f Vol•corr
j (r) + kBT ln Fbulk

ij (2)

εR )
Ncmpd/2

〈Rank(binding•cmpd)〉
(3)
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where Ncmpd is the number of compounds in the database and
〈Rank(binding•compd)〉 is the average rank of the computed
score of all binding compounds. In case of an equal distribution
of the weak binders in the database, the enrichment factor εR

is 1.0. An enrichment factor larger than 1.0 indicates an
enrichment of weak binders in the top region of the ranking
list. The larger εR becomes, the better is the enrichment of
weak binders in the top ranking list.

Results and Discussion

Experimental Determination of Ligand Binding.
Ligands were screened for binding to FKBP using
NMR.4 The library contained 4112 commercially avail-
able compounds. The ligands were intially screened as
mixtures of 10 compounds at ligand concentrations of
1.0 mM each. Those mixtures of compounds that caused
changes in the amide resonances of FKBP were subse-
quently deconvoluted by testing individual members of
the library at 1.0 mM each. All mixtures of individual
compounds that did not cause any chemical shift
changes in FKBP were classified as nonbinders. The
ones that bound were titrated to yield dissociation
constants (see Methods section).

Using this approach, 31 of the 4112 compounds were
found to bind to the FK506 binding site on FKBP with
dissociation constants less than 2.0 mM and were
assigned as weak binders. As shown in Figure 1, these
compounds are of diverse structural classes that include
arylimidazoles (1-3), coumarins (4-6), arylsulfona-
mides (7, 8), and cyclohexanones (9, 10). One-dimen-
sional 1H NMR spectra were obtained for all binding
compounds to confirm their molecular structure (see
Methods section).

Computational Ranking. The library of 4112 com-
pounds described above offered a unique opportunity to
evaluate the docking/PMF-score procedure to computa-
tionally identify small molecules with weak binding
affinities for FKBP. Although the structures of the
protein-ligand complexes were not determined, the
chemical shifts measured for specific residues identified
the general location of the binding site. For the evalu-
ation of the docking/PMF-score approach, a subset of
only 3247 molecules was chosen, since the PMF-score
function does not have suitable potentials for halogens.28

Therefore, molecules containing bromine, chlorine, or
iodine substituents were discarded. This reduced set
contained 28 compounds with measured dissociation
constants less than 2.0 mM that were assigned as weak
binders.

Figures 2a-c and Table 1 show the computational
ranking of the molecules in the set of weak binders with
respect to all other compounds in the database as a
result of the docking/scoring procedure used. For com-
parison purposes, Figure 2a shows a hypothetical equal
distribution of the 28 weak binders in the computational
ranking list. Figure 2b shows only a small enrichment
of these 28 compounds in the upper half of the ranking
list as result of docking/force-field scoring. Intraligand
interactions were considered in the score using a scoring
protocol similar to that recently used by Makino and
Kuntz in the automatic and flexible docking a molecular
database to a dihydrofolate reductase structure.14 Fig-
ure 2c shows the results for the docking/PMF-score
which included intraligand interactions. The enrichment
of weakly binding molecules in the upper ranks is 55%
higher than in the docking/force-field scoring case. If
intraligand interactions are omitted, the enrichment of
weak binders in the top ranks of the computational hit
list can be significantly improved in both cases (Table
1). This result is not that surprising, since neglecting
strongly fluctuating intraligand interactions stabilizes
calculations of biologically relevant free energies, in-
cluding binding free energy.34-37 However, it is still very
useful to have the intraligand interactions switched on
during the flexible docking to avoid unrealistic ligand
conformations.

Structural validation was performed for 83 of the top
PMF-ranked compounds (see Methods section). In ad-
dition, structural validation was performed for the top
10 PMF-ranked compounds when molecular weight
limits of 200 and 150 Da were imposed on the database.

Figure 1. Subset of molecules in the set of 28 compounds that
bind to FKBP with dissociation constants below 2.0 mM. KD

is shown in parentheses and given in mM units.

Table 1. Enrichment Factors for Different Scoring Functionsa

εR

scoring
function conditions

all
compdsb

MW
e 210
Dac

PMF-score no intraligand interactions 2.00 2.77
PMF-score intraligand and interactions

included
1.76 3.00

AMBER-
score

no intraligand interactions 1.54 1.42

AMBER-
score

intraligand interactions
included

1.13 1.36

a The enrichment factor for weakly active compounds in the top
region of the computational ranking list is calculated by eq 3.
b There are 28 weakly binding and 3247 total compounds in this
set. c There are 10 weakly binding and 2077 total compounds in
this set.
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Figure 3 shows a set of structurally similar com-
pounds that were ranked similarly with the PMF-score.
With only two exceptions, all compounds are predicted
to dock in the same binding mode in FKBP (Figure 4).
Of these 10 compounds, only one bound to FKBP with

a KD less than 2.0 mM (2, KD ) 0.1 mM), while another
exhibited very weak binding (11, KD ) 4.0 mM). All the
other compounds exhibited no measurable binding to
FKBP by NMR. Figure 4 shows that the phenyl (2, 11-
18) and pyridine (19) moieties were always docked into
a hydrophobic pocket in the FK506 binding site of FKBP
that is formed by F46, V55, W59, and F99. The imida-
zole (2, 15, 17), triazole (11), pyrazole (12, 13), isoxazole
(14), pyrole (16), and tetrazole (18, 19) moieties of the
molecules can establish a hydrogen bond to Y26 or Y82
with small conformational changes. The tetrazole com-
pounds (18, 19) may be deprotonated and experience
electrostatic repulsion from D37. Note, however, that
the PMF-score did not treat the tetrazole compounds
as being deprotonated and therefore negatively charged;
this may explain why compounds 18 and 19 do not bind
but show a similar PMF-score to the weakly binding
compound 2. Introducing a negatively charged nitrogen
into the tetrazole moieties of compounds 18 and 19

Figure 2. (a-c) Ranking list of the database containing 3247
compounds according to the best scores of each molecule in
flexible docking against FKBP. The rank of the compounds of
the set of weak binders (binding affinities < 2.0 mM) is
indicated by horizontal bars. For comparison purposes, a
hypothetical, equal distribution of the compounds in the weak
binder set is shown (a). Columns b and c show distributions
of compounds of the weak binder set as docked and computed
using (b) the force-field score (AMBER) including intraligand
contribution and (c) the PMF-score including intraligand
contributions. The corresponding enrichment factors (eq 3) are
listed in Table 1. (d-f) Ranking list of a subset of the database
containing 2077 compounds with molecular weight e 210 Da
including 10 weakly binding compounds. The rank of the 10
known binding compounds is indicated by horizontal bars. For
comparison purposes a hypothetical, equal distribution of the
compounds in the weak binder set is shown (d). Distributions
of compounds of the weak binder set in the ranking list of the
database are shown as docked and computed using (e) the
force-field score (AMBER) including intraligand contribution
and (f) the PMF-score including intraligand contributions. The
corresponding enrichment factors (eq 3) are listed in Table 1.

Figure 3. Subset of molecules with similar structure contain-
ing one weakly binding compound (2). KD is shown in paren-
theses and given in mM units. The lower line shows the PMF-
score and the rank of the compounds in a subset of 697
compounds with molecular weight below 150 Da.

Figure 4. Molecules 2 and 11-19 docked into the FK506
binding site of FKBP.
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decreased their PMF-score by ∼5.0 and lowered their
rank by ∼90. The PMF-score does not distinguish
between nitrogen atoms as part of an aromatic ring
structure as to whether they have a hydrogen attached
or not.28 This may be the reason why all the compounds
in Figures 3 and 4 score similarly but only two of them
show weak binding affinity for FKBP. This example
shows one clear limitation of the docking/scoring ap-
proach that may be overcome by introducing better
ligand atom types in the PMF-score approach.

Influence of Molecular Weight on Scoring. Since
the molecular weight of a lead compound should ideally
not be higher than 500 Da to make a good drug,5 the
molecular weight of the fragments should be small.
Therefore, we analyzed the docking/scoring results with
respect to the influence of molecular weight on the
enrichment of weakly binding compounds in the upper
ranks of the computational hit list. The average molec-
ular weight of the database is 191 Da, whereas the
average molecular weight of the 28 weak binders is 228
Da. The average molecular weight of the top 100
molecules of the docking/PMF-score ranking list is 272
(268) Da in the case of neglecting (including) intraligand
contributions and 282 (261) Da in the case of docking/
force-field scoring. This shows that both atom-based
scoring methods are somewhat biased toward molecules
with higher molecular weight.

A subset of 2077 molecules with a molecular weight
of less than 210 Da contains 10 of the 28 weak binders
of the database. Figure 2d-f and Table 1 show that the
enrichment of the weak binders in the upper ranks of
the computational hitlist is much higher than the
enrichment found for the entire database. Again, the
PMF-score performs better than force-field score, and
the highest enrichment is εR ) 3.0 (Table 1). This result
suggests that the PMF-score identifies molecules that
bind to FKBP with lower molecular weight more easily
than those with higher molecular weight. On the basis
of the computational screening, two-thirds of the mol-
ecules could have been spared from NMR testing
without losing any of the 10 compounds that bind. This
finding is encouraging, since for SAR by NMR as well
as for combinatorial chemistry one is interested in
identifying small molecular pieces that can be as-
sembled to active lead molecules in the drug discovery
process. Further evaluation is required to determine if
the ability to predict binding compounds with smaller
molecular weight is a general characteristics of the PMF
scoring function.

Conclusions

The design of reliable scoring functions for the predic-
tion of protein-ligand binding affinities is a long-
standing issue in computer-aided drug design. Never-
theless, the quality of all existing scoring functions (e.g.,
force-field-based, empirical, chemical, contact, statisti-
cal) implemented in docking or de novo design programs
is still not accurate enough to make reliable predictions
of binding modes of molecules in proteins or to rank
different molecules according to their biological activity.8
Therefore, improvements in computational scoring as
presented in this work are very encouraging. Further
improvement of the PMF-score can be reached by
refining the atom types and introducing interaction

potentials for halogens. Since the number of halogen
occurrences in the PDB is small, no statistically signifi-
cant potentials of mean force could be derived. However,
these interaction potentials could be empirically gener-
ated by using small molecule crystallographic data as
done in the GRID program.38 More improvement can
come from a better choice of atom types in the PMF-
score approach. For instance, as mentioned above, the
PMF-score does not distinguish between nitrogen atoms
in heterocycles as to whether they bear hydrogen atoms
or not. In general, a comparison between all derived
PMF-score atom types, deleting, merging, and creating
new and maybe more relevant atom types will improve
the PMF scoring.

As described here, a library of more than 4000
commercially available compounds were screened for
binding to FKBP using SAR by NMR, and the binding
affinities of weak binders were validated. These data
offered the unique opportunity to test a newly developed
docking/scoring approach for identifying weak binding
molecules. It was shown that the PMF-score function
implemented into DOCK4 can enrich small, weakly
binding molecules in the upper part of the computa-
tional ranking list. On the basis of such a computational
screening, molecular libraries for SAR by NMR experi-
ments can be designed to have a higher chance of
containing active compounds. The ability of the docking/
PMF-score approach to separate weak binders from
nonbinders also has implications for the design of
combinatorial libraries. Assuming additivity in binding
affinity for building blocks of a combinatorial library,
the binding of these molecular pieces can be computa-
tionally prescreened. On the basis of ranking results,
specific sets of building blocks can be chosen or dis-
carded.

The prediction of weak binding affinities is much more
challenging than that of strong binders since the binding
affinity range of such molecules is smaller. Therefore,
we measured the success of a docking/scoring approach
not by the highest rank of a binding compound in a
computational rnaking list but by the enrichment of all
weakly binding compounds in the upper ranks. It was
shown that the PMF scoring function performs signifi-
cantly better than the standard force-field scoring
function in DOCK4 in identifying weakly binding com-
pounds. This enhancement in predictability of binding
affinity is very encouraging, especially since computa-
tional methods have not been accurate enough to make
reliable predictions of binding affinities for large num-
bers of molecules in reasonable computer time. The
design of reliable scoring functions is a long-standing
issue that needs to be solved to make rapid binding
affinity prediction through computational screening a
competitive tool in drug discovery.
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